Open science is the movement to make scientific research (including publications, data, physical samples, and software) transparent and free access to all levels of society through collaborative networks. It encompasses practices such as publishing open research, campaigning for open access, encouraging scientists to practice open-notebook science (such as openly sharing data and code), broader dissemination and public engagement in science and generally making it easier to publish, access and communicate scientific knowledge.
Usage of the term varies substantially across disciplines, with a notable prevalence in the STEM disciplines. The term 'open research' has gained currency as a broader alternative to 'open science,' encompassing the humanities and arts alongside traditional scientific disciplines. The primary focus connecting all disciplines is the widespread uptake of new technologies and tools, and the underlying ecology of the production, dissemination and reception of knowledge from a research-based point-of-view.
As Tennant et al. (2020) note, the term open science "implicitly seems only to regard 'scientific' disciplines, whereas open scholarship can be considered to include research from the Arts and Humanities,
Open science can be seen as continuing, rather than revolutionizing, practices that began in the 17th century with the academic journal, which enabled scientists to share resources in response to growing societal demand for scientific knowledge. The Open Science movement emerged from tension between scientists' desire for shared research resources and institutions' interest in protecting proprietary information for profit. Additionally, the status of open access and resources that are available for its promotion are likely to differ from one field of academic inquiry to another.
According to the FOSTER taxonomy, Open science can often include aspects of Open access, Open data and the open source movement whereas modern science requires software to process data and information. Open research computation also addresses the problem of reproducibility of scientific results.
According to Fecher and Friesike 'Open Science' encompasses diverse perspectives on how knowledge is created and shared. Fecher and Friesike identify five distinct schools of Open Science, each reflecting different priorities and approaches to the movement:
1. Distributed computing: This trend encapsulates practices that outsource complex, process-heavy scientific computing to a network of volunteer computers around the world. The examples that the sociologists cite in their paper is that of the Open Science Grid, which enables the development of large-scale projects that require high-volume data management and processing, which is accomplished through a distributed computer network. Moreover, the grid provides the necessary tools that the scientists can use to facilitate this process.
2. Social and Collaboration Networks of Scientists: This trend encapsulates the development of software that makes interaction with other researchers and scientific collaborations much easier than traditional, non-digital practices. This trend emphasizes social media platforms and collaborative digital tools to enable research communication and coordination. De Roure and colleagues (2008)
Hence, this school argues that there are faster impact measurement technologies that can account for a range of publication types as well as social media web coverage of a scientific contribution to arrive at a complete evaluation of how impactful the science contribution was. The gist of the argument for this school is that hidden uses like reading, bookmarking, sharing, discussing and rating are traceable activities, and these traces can and should be used to develop a newer measure of scientific impact. The umbrella jargon for this new type of impact measurements is called altmetrics, coined in a 2011 article by Priem et al., (2011). Markedly, the authors discuss evidence that altmetrics differ from traditional webometrics which are slow and unstructured. Altmetrics are proposed to rely upon a greater set of measures that account for tweets, blogs, discussions, and bookmarks. Scholars propose that altmetrics should capture the entire research lifecycle, including collaboration patterns, to produce comprehensive impact measures. However, the authors are explicit in their assessment that few papers offer methodological details as to how to accomplish this. The authors use this and the general dearth of evidence to conclude that research in the area of altmetrics is still in its infancy.
The system of not publicizing discoveries caused problems because discoveries were not shared quickly and because it sometimes was difficult for the discoverer to prove priority. Newton and Gottfried Leibniz both claimed priority in discovering calculus. Newton said that he wrote about calculus in the 1660s and 1670s, but did not publish until 1693. Leibniz published "Nova Methodus pro Maximis et Minimis", a treatise on calculus, in 1684. Debates over priority are inherent in systems where science is not published openly, and this was problematic for scientists who wanted to benefit from priority.
Under aristocratic patronage, scientists received funding to develop useful innovations or provide entertainment, creating pressure to satisfy patrons' desires and limiting open research that might benefit others.
The idea of open access to scientific publications quickly became inseparable from the question of free licenses to guarantee the right to disseminate and possibly modify shared documents, such as the Creative Commons licenses, created in 2002. In 2011, a new text from the Budapest Open Initiative explicitly refers to the relevance of the CC-BY license to guarantee free dissemination and not only free access to a scientific document.
Beyond publications, the open access principle has expanded to include research data — the empirical foundation of scientific studies across disciplines, as mentioned already in the Berlin Declaration in 2003. In 2007, the OECD (OECD) published a report on access to publicly funded research data, in which it defined it as the data that validates research results.
Beyond its democratic virtues, open science aims to respond to the replication crisis of research results, notably through the generalization of the opening of data or source code used to produce them or through the dissemination of methodological articles.
The open science movement inspired several regulatory and legislative measures. Thus, in 2007, the University of Liège adopted a mandate requiring deposit of researchers' publications in its institutional repository, Orbi, which launched in November 2008. In 2008, through the Consolidated Appropriations Act, the NIH Public Access Policy was made mandatory (previously voluntary since 2004). In France, the law for a digital Republic enacted in 2016 creates the right to deposit the validated manuscript of a scientific article in an open archive, with an embargo period following the date of publication in the journal. The law also creates the principle of reuse of public data by default.
In December 2011, some United States legislators introduced a bill called the Research Works Act, which would prohibit federal agencies from issuing grants with any provision requiring that articles reporting on taxpayer-funded research be published for free to the public online. Darrell Issa, a co-sponsor of the bill, explained the bill by saying that "Publicly funded research is and must continue to be absolutely available to the public. We must also protect the value added to publicly funded research by the private sector and ensure that there is still an active commercial and non-profit research community." In response, researchers organized widespread protests, including a boycott of the commercial publisher Elsevier called The Cost of Knowledge.
The Dutch Presidency of the Council of the European Union called out for action in April 2016 to migrate European Commission funded research to Open Science. European Commissioner Carlos Moedas introduced the Open Science Cloud at the Open Science Conference in Amsterdam on 4–5 April. During this meeting also The Amsterdam Call for Action on Open Science was presented, a living document outlining concrete actions for the European Community to move to Open Science. The European Commission continues to be committed to an Open Science policy including developing a repository for research digital objects, European Open Science Cloud (EOSC) and metrics for evaluating quality and impact.
In October2021, the French Ministry of Higher Education, Research and Innovation released an official translation of its second plan for open science spanning the years 2021–2024.
Publication date refers to French language version.
Two UN frameworks set out some common global standards for application of Open Science and closely related concepts: the UNESCO Recommendation on Science and Scientific Researchers, approved by the General Conference at its 39th session in 2017, and the UNESCO Strategy on Open Access to scientific information and research, approved by the General Conference at its 36th session in 2011.
An article published by a team of NASA astrobiologists in 2010 in Science reported a bacteria known as GFAJ-1 that could purportedly metabolize arsenic (unlike any previously known species of lifeform). This finding, along with NASA's claim that the paper "will impact the search for evidence of extraterrestrial life", met with criticism within the scientific community. Much of the scientific commentary and critique around this issue took place in public forums, most notably on Twitter, where hundreds of scientists and non-scientists created a hashtag community around the hashtag #arseniclife. University of British Columbia astrobiologist Rosie Redfield, one of the most vocal critics of the NASA team's research, also submitted a draft of a research report of a study that she and colleagues conducted which contradicted the NASA team's findings; the draft report appeared in arXiv, an open-research repository, and Redfield called in her lab's research blog for peer review both of their research and of the NASA team's original paper. Researcher Jeff Rouder defined Open Science as "endeavoring to preserve the rights of others to reach independent conclusions about your data and work". Jeff Rouder Twitter, 6 December 2017 The paper was eventually retracted, 15 years later, on 24 August 2025.
Public funding of research has long been cited as one of the primary reasons for providing Open Access to research articles. Since there is significant value in other parts of the research such as code, data, protocols, and research proposals a similar argument is made that since these are publicly funded, they should be publicly available under a Creative Commons Licence.
Increasingly the reproducibility of science is being questioned and for many papers or multiple fields of research was shown to be lacking. This problem has been described as a "reproducibility crisis". For example, psychologist Stuart Vyse notes that "(r)ecent research aimed at previously published psychology studies has demonstrated – shockingly – that a large number of classic phenomena cannot be reproduced, and the popularity of Data dredging is thought to be one of the culprits." Open Science approaches are proposed as one way to help increase the reproducibility of work as well as to help mitigate against manipulation of data.
There are several components to impact in research, many of which are hotly debated. However, under traditional scientific metrics parts Open science such as Open Access and Open Data have proved to outperform traditional versions.Swan, Alma. "The Open Access citation advantage: Studies and results to date." (2010).
Open science needs to acknowledge and accommodate the heterogeneity of science. It provides opportunities for different communities to learn from other communities, as well as to inform learning and practice across fields. For example, preregistration in quantitative sciences can benefit qualitative researchers to reduce researcher degrees of freedom, whereas positionality statements have been used to contextual researcher and research environment in qualitative can be used in order to combat reproducibility crisis in quantitative research. In addition, journals should be open to publishing these behaviours, using a guide to ease journal editors into open science.
Recent arguments in favor of Open Science have maintained that Open Science is a necessary tool to begin answering immensely complex questions, such as the neural basis of consciousness, ecosystem services or pandemics such as the COVID-19 pandemic. The typical argument propagates the fact that these types of investigations are too complex to be carried out by any one individual, and therefore, they must rely on a network of open scientists to be accomplished. By default, the nature of these investigations gives this "open science" the characteristics of "big science". It is thought that open science could support innovation and societal benefits, supporting and reinforcing research activities by enabling digital resources that could, for example, use or provide structured open data.
In 2011, Dutch researchers announced their intention to publish a research paper in the journal Science describing the creation of a strain of H5N1 influenza which can be easily passed between , the mammals which most closely mimic the human response to the flu. The announcement triggered a controversy in both political and scientific circles about the ethical implications of publishing scientific data which could be used to create biological weapons. These events are examples of how science data could potentially be misused. It has been argued that constraining the dissemination of dual-use knowledge can in certain cases be justified because, for example, "scientists have a responsibility for potentially harmful consequences of their research; the public need not always know of all scientific discoveries or; uncertainty about the risks of harm may warrant precaution; and expected benefits do not always outweigh potential harm".
Scientists have collaboratively agreed to limit their own fields of inquiry on occasions such as the Asilomar conference on recombinant DNA in 1975, and a proposed 2015 worldwide moratorium on a human-genome-editing technique. Differential technological development aims to decrease risks by influencing the sequence in which technologies are developed. Traditional legislative and regulatory approaches may prove insufficient because they typically respond too slowly to emerging dual-use research concerns.
In 2009 NASA launched the Kepler spacecraft and promised that they would release collected data in June 2010. Later they decided to postpone release so that their scientists could look at it first. Their rationale was that non-scientists might unintentionally misinterpret the data, and NASA scientists thought it would be preferable for them to be familiar with the data in advance so that they could report on it with their level of accuracy.
Post-publication peer review, a staple of open science, has been criticized as promoting the production of lower quality papers that are extremely voluminous. Specifically, critics assert that as quality is not guaranteed by preprint servers, the veracity of papers will be difficult to assess by individual readers. This will lead to rippling effects of false science, akin to the recent epidemic of false news, propagated with ease on social media websites. Common solutions to this problem have been cited as adaptations of a new format in which everything is allowed to be published but a subsequent filter-curator model is imposed to ensure some basic quality of standards are met by all publications.
The Allen Institute for Brain Science conducts numerous open science projects while the Center for Open Science has projects to conduct, advocate, and create tools for open science. Other workgroups have been created in different fields, such as the Decision Analysis in R for Technologies in Health (DARTH) workgroup], which is a multi-institutional, multi-university collaborative effort by researchers who have a common goal to develop transparent and open-source solutions to decision analysis in health.
Organizations have extremely diverse sizes and structures. The Open Knowledge Foundation (OKF) is a global organization sharing large data catalogs, running face to face conferences, and supporting open source software projects. In contrast, Blue Obelisk is an informal group of chemists and associated cheminformatics projects. The tableau of organizations is dynamic with some organizations becoming defunct, e.g., Science Commons, and new organizations trying to grow, e.g., the Self-Journal of Science. Common organizing forces include the knowledge domain, type of service provided, and even geography, e.g., OCSDNet's concentration on the developing world.
The Allen Brain Atlas maps gene expression in human and mouse brains; the Encyclopedia of Life documents all the terrestrial species; the Galaxy Zoo classifies galaxies; the International HapMap Project maps the of the human genome; the Monarch Initiative makes available integrated public model organism and clinical data; and the Sloan Digital Sky Survey which regularizes and publishes data sets from many sources. All these projects accrete information provided by many different researchers with different standards of curation and contribution.
Mathematician Timothy Gowers launched open science journal Discrete Analysis in 2016 to demonstrate that a high-quality mathematics journal could be produced outside the traditional academic publishing industry. The launch followed a boycott of scientific journals that he initiated. The journal is published by a nonprofit which is owned and published by a team of scholars.
Other projects are organized around completion of projects that require extensive collaboration. For example, OpenWorm seeks to make a cellular level simulation of a roundworm, a multidisciplinary project. The Polymath Project seeks to solve difficult mathematical problems by enabling faster communications within the discipline of mathematics. The Collaborative Replications and Education project recruits undergraduate students as Citizen Science by offering funding. Each project defines its needs for contributors and collaboration.
Another practical example for open science project was the first "open" doctoral thesis started in 2012. It was made publicly available as a self-experiment right from the start to examine whether this dissemination is even possible during the productive stage of scientific studies. The goal of the dissertation project: Publish everything related to the doctoral study and research process as soon as possible, as comprehensive as possible and under an open license, online available at all time for everyone. End of 2017, the experiment was successfully completed and published in early 2018 as an open access book.
An example promoting accessibility of open-source code for research papers is CatalyzeX, which finds and links both official implementations by authors and source code independently replicated by other researchers. These code implementations are also surfaced on the preprint server arXiv and open peer-review platform OpenReview.
The ideas of open science have also been applied to recruitment with jobRxiv, a free and international job board that aims to mitigate imbalances in what different labs can afford to spend on hiring.
Other advocates concentrate on educating scientists about appropriate open science software tools. Education is available as training seminars, e.g., the Software Carpentry project; as domain specific training materials, e.g., the Data Carpentry project; and as materials for teaching graduate classes, e.g., the Open Science Training Initiative. Many organizations also provide education in the general principles of open science.
Within scholarly societies there are also sections and interest groups that promote open science practices. The Ecological Society of America has an Open Science Section. Similarly, the Society for American Archaeology has an Open Science Interest Group.
Journal support for open-science does not conflict with preprint servers: figshare archives and shares images, readings, and other data; and Open Science Framework preprints, arXiv, and HAL Archives Ouvertes provide electronic preprints across many fields.
Blockchain platforms for open science have been proposed. The first such platform is the Open Science Organization, which aims to solve urgent problems with fragmentation of the scientific ecosystem and difficulties of producing validated, quality science. Among the initiatives of Open Science Organization include the Interplanetary Idea System (IPIS), Researcher Index (RR-index), Unique Researcher Identity (URI), and Research Network. The Interplanetary Idea System is a blockchain based system that tracks the evolution of scientific ideas over time. It serves to quantify ideas based on uniqueness and importance, thus allowing the scientific community to identify pain points with current scientific topics and preventing unnecessary re-invention of previously conducted science. The Researcher Index aims to establish a data-driven statistical metric for quantifying researcher impact. The Unique Researcher Identity is a blockchain technology based solution for creating a single unifying identity for each researcher, which is connected to the researcher's profile, research activities, and publications. The Research Network is a social networking platform for researchers. A scientific paper from November 2019 examined the suitability of blockchain technology to support open science.
One criticism of pre-print servers is their potential to foster a culture of plagiarism. For example, the popular physics preprint server ArXiv had to withdraw 22 papers when it came to light that they were plagiarized. In June 2002, a high-energy physicist in Japan was contacted by a man called Ramy Naboulsi, a non-institutionally affiliated mathematical physicist. Naboulsi requested Watanabe to upload his papers on ArXiv as he was not able to do so, because of his lack of an institutional affiliation. Later, the papers were realized to have been copied from the proceedings of a physics conference. Preprint servers are increasingly developing measures to circumvent this plagiarism problem. In developing nations like India and China, explicit measures are being taken to combat it.Chaddah, P. (2016). On the need for a National Preprint Repository. Proceedings of the Indian National Science Academy, 82(4), 1167–1170. These measures usually involve creating some type of central repository for all available pre-prints, allowing the use of traditional plagiarism detecting algorithms to detect the fraud. Nonetheless, this is a pressing issue in the discussion of pre-print servers, and consequently for open science.
|
|